WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#3 Key

Problem 1. Consider the 4×4 first-order differential operator in $\Omega \subset \mathbb{R}^{3}$

$$
P(\partial) u=\left[\begin{array}{c}
\nabla \times v+\nabla w \\
\nabla \cdot v
\end{array}\right] .
$$

Here $u=\left[\begin{array}{c}v \\ w\end{array}\right]$ is a vector-valued function with four components, v is a vector-valued function with three components, and the function w is scalar-valued.
a.) Write out the (principal) symbol $P(\xi)$.

Solution.

$$
P(\xi)=\left[\begin{array}{cccc}
0 & -i \xi_{3} & i \xi_{2} & i \xi_{1} \\
i \xi_{3} & 0 & -i \xi_{1} & i \xi_{2} \\
-i \xi_{2} & i \xi_{1} & 0 & i \xi_{3} \\
i \xi_{1} & i \xi_{2} & i \xi_{3} & 0
\end{array}\right]
$$

b.) Prove that P is elliptic.

Solution. Compute

$$
\operatorname{det} P(\xi)=-|\xi|^{4}
$$

c.) Let $\alpha \in C^{\infty}\left(\bar{\Omega}, \mathbb{C}^{3 \times 3}\right)$ be a Hermitian matrix, i.e. $\alpha^{H}=\alpha$. Give sufficient and necessary conditions such that the operator

$$
P_{\alpha}(x, \partial) u=\left[\begin{array}{c}
\nabla \times v+\alpha(x) \nabla w \\
\nabla \cdot(\alpha(x) v)
\end{array}\right]
$$

is an elliptic operator in the sense of Definition 2.3.1.
Solution. Similar to part b.), one computes

$$
\operatorname{det} P_{\alpha}(x, \xi) u=-\left[\xi^{T} \alpha(x) \xi\right]^{2} .
$$

Hence, P is elliptic if and only if α has non-zero eigenvalues.
Problem 2. Suppose that $P(D)$ is a constant coeffcient elliptic operator. As discussed in the proof of Theorem 2.3.2, there exists a $K \in \mathbb{R}$ such that $P(\xi)^{-1}$ exists for all $|\xi| \geq K$. Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ satisfying $\varphi(\xi)=1$ for all $|\xi| \leq K$.
a.) Prove that the operator with symbol $E(\xi)=(1-\varphi(\xi)) P(\xi)^{-1}$ is a continuous operator from $H^{\sigma}\left(\mathbb{R}^{d}\right)$ into $H^{m+\sigma}\left(\mathbb{R}^{d}\right)$ for all $\sigma \in \mathbb{R}$. Here

$$
E(D) u(x)=\frac{1}{(2 \pi)^{d / 2}} \int e^{i x \cdot \xi} E(\xi) \hat{u}(\xi) d \xi
$$

where \hat{u} is the Fourier transform of u.
Solution. The ellipticity of P implies that there exists a constant such that $|P(\xi)| \geq C|\xi|^{m}$. Here $|\cdot|$ denotes a matrix norm (when applied to matrices), e.g. the spectral norm. (In the
L_{2} setting the spectral norm is usually preferred since it is compatible with the Euclidean scalar product. However, all matrix norms are equivalent.)

To understand the inequality $|P(\xi)| \geq C|\xi|^{m}$ for large $|\xi|$ one looks at first at the principal symbol which is homogeneous of degree m in ξ and elliptic, hence $P_{m}(\xi) \geq c|\xi|^{m}$ for all $\xi \in \mathbb{R}^{d}$ where c is again a positive constant. The lower order terms can be estimated by some constant times $|\xi|^{m-1}$.

Using the definition of E gives then $|E(\xi)| \leq C|\xi|^{-m} \leq C\langle\xi\rangle^{-m}$. Then

$$
\|E(D) u\|_{H^{m+\sigma}\left(\mathbb{R}^{d}\right)}^{2}=\int_{\mathbb{R}^{d}}|E(\xi) \hat{u}(\xi)|^{2}\langle\xi\rangle^{2 m+2 \sigma} d \xi \leq C \int_{\mathbb{R}^{d}}|\hat{u}(\xi)|^{2}\langle\xi\rangle^{2 s} d \xi=C\|u\|_{H^{\sigma}\left(\mathbb{R}^{d}\right)}^{2}
$$

b.) Show that

$$
E(D) P(D)=I+\rho(D)
$$

where $\rho \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ and I is the identity mapping.
Solution. We have

$$
\begin{aligned}
E(D) P(D) u & =\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} E(\xi) \widehat{P(D) u}(\xi) d \xi=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} E(\xi) P(\xi) \hat{u}(\xi) d \xi \\
& =\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi}[1-\varphi(\xi)] \hat{u}(\xi) d \xi=u-\varphi(D) u
\end{aligned}
$$

which proves the statement with $\rho=-\varphi$.
c.) Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$. Prove that $\varphi(D)$ is a continuous operator from $H^{s}\left(\mathbb{R}^{d}\right)$ into $H^{t}\left(\mathbb{R}^{d}\right)$ for all real numbers $s, t \in \mathbb{R}$.
Solution. Let $K=\operatorname{supp} \varphi$ which is a compact set in \mathbb{R}^{d}. Then

$$
\|\varphi(D) u\|_{H^{t}\left(\mathbb{R}^{d}\right)}^{2}=\int_{K}\langle\xi\rangle^{2 t}|\varphi(\xi) \hat{u}(\xi)|^{2} d \xi \leq C(s, t) \int_{K}\langle\xi\rangle^{2 s}|\hat{u}(\xi)|^{2} d \xi=\|u\|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2}
$$

since $|\varphi(\xi)|\langle\xi\rangle^{t-s}$ is a continuous function on K and hence bounded.
Problem 3. This problem has connection with Problem 3 of Homework \#2. Let \mathbb{T}^{d} denote the d-dimensional torus. If f is integrable on \mathbb{T}^{d}, then the Fourier coefficients of f are given by

$$
\mathcal{F}[f](k)=\hat{f}(k)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{T}^{d}} f(\theta) e^{-i k \cdot \theta} d \theta, \quad k \in \mathbb{Z}^{d}
$$

For $s \in \mathbb{R}, s \geq 0$ we define

$$
H^{s}\left(\mathbb{T}^{d}\right)=\left\{u \in L_{2}\left(\mathbb{T}^{d}\right): \sum_{k \in \mathbb{Z}^{d}}|\hat{u}(k)|^{2}\langle k\rangle^{2 s}<\infty\right\}
$$

where $\langle k\rangle=\sqrt{1+|k|^{2}}$.
a.) Show that for $m \in \mathbb{N}$

$$
H^{m}\left(\mathbb{T}^{d}\right)=\left\{u \in L_{2}\left(\mathbb{T}^{d}\right): D^{\alpha} u \in L_{2}\left(\mathbb{T}^{d}\right) \text { for }|\alpha| \leq m\right\}
$$

Solution. Note that $\left[\mathcal{F}\left(D^{\alpha} u\right](k)=k^{\alpha} \hat{u}(k)\right.$. Hence $D^{\alpha} u \in L_{2}\left(\mathbb{T}^{d}\right)$ for all $|\alpha| \leq m$ if and only if $k^{\alpha} \hat{u}(k) \in l_{2}$ for $|\alpha| \leq m$. One can find positive constants c_{1} and c_{2} such that

$$
c_{1}\langle k\rangle^{2 m} \leq \sum_{|\alpha| \leq m} k^{2 \alpha} \leq c_{2}\langle k\rangle^{2 m}
$$

which proves that $u \in H^{m}\left(\mathbb{T}^{d}\right)$ is equivalent to $D^{\alpha} u \in L_{2}\left(\mathbb{T}^{d}\right)$ for all $|\alpha| \leq m$.
b.) Use Problem 3b from Homework \#2 to prove Theorem 2.1.2, also known as Rellich's Theorem.
Solution. Note that since the region Ω is bounded it can be put inside of a (scaled) torus \mathbb{T}^{d}. By scaled torus we mean a d dimensional cube of side length large enough so that Ω can be placed inside. The natural injection j from $H^{s+\sigma}(\Omega)$ into $H^{s}(\Omega)$ can be written as follows.

$$
j=E \circ i \circ R
$$

where E is an extension operator for $H^{s+\sigma}(\Omega)$ into $H^{s+\sigma}\left(\mathbb{T}^{d}\right)$ and R is the restriction operator from $H^{s}\left(\mathbb{T}^{d}\right)$ to $H^{s}(\Omega)$, and i is the natural injection from $H^{s+\sigma}\left(\mathbb{T}^{d}\right)$ into $H^{s}\left(\mathbb{T}^{d}\right)$ which was proved to be compact in Problem 3 in the previous homework. Note that the operators E and R are continuous. Hence, the operator j written as a composition of continuous and compact operators is compact.

To be honest, the continuity of E is not entirely trivial. With the equivalent definition of $H^{s}(\Omega)$ as restrictions of functions in $H^{s}\left(\mathbb{R}^{d}\right)$ it remains to be shown that the multiplication of u with a cutoff function χ is a continuous operation. This operation is needed to obtain a function which can be extended as a periodic function on \mathbb{R}^{d}.

